

© moNNster

VPN access
The only step required to complete this first task was to properly configure VPN connection and visit

mentioned host.

Treasure map
Upon careful inspection of the provided map image, one could notice the flag string is scattered along

the red dashed line. It was as easy as following the path and concatenating all the characters.

Captain's coffee
The initial API URL returns a JSON message stating Coffeemaker is ready and suggests visiting /docs.

Inspecting the source code there, another 2 URL’s were discovered, one of which points to

Write up by moNNster

© moNNster

openapi.json. There all the API calls required to list the coffee options and make an Espresso were

listed. As a further hint, Swagger was also mentioned so online documentation was also handy.

Ship web server
Here the first step was to inspect the certificate, where multiple SAN’s are mentioned. Pointing those

to the same IP address in hosts file was then enough to make them reachable.

Next, each page contained one part of the flag encoded in base64 more or less in plain sight. Home

had the first part under each profile page, structure and pirates showed their bits at the bottom of the

page and while documentation was seemingly inaccessible, inspecting the source code and viewing

/styles.css revealed the last part.

Sonar logs
Here the first step was to covert all timestamps to one time zone, which was easily achieved with pytz

python library. Once normalized it was necessary to sort the log entries and filter out events where

objects were detected. Converting the hex values then produced what seemed like the flag string, but

one character was apparently misplaced. Luckily enough it only took a bit of manual correction to fix

that, and seemingly it could also be sorted by downgrading to an older version of the library according

to one of the hints.

© moNNster

Regular cube
This was a classic regex crossword, just this time it was 3 dimensional:

Web protocols
This task suggests we look at web protocols on a given server, so scanning for available ports is a good

first step.

Here the flag parts were hidden in a session cookie as base64 strings upon hitting on each of the ports

using HTTP protocol, the only trick was for 5009 to downgrade to HTTP/0.9.

Apha-Zulu quiz
Not sure if there was any trick with this one, but it was possible to simply learn to identify few types

of data chunks and pass the test to be provided with the flag. CyberChef could also help a bit, e.g. with

its Analyse hash function.

© moNNster

Captain’s password
Provided the memory dump alongside a KeePass database, it was rather straight forward the aim here

may be to try and exploit CVE-2023-32784 which allows recovering master key from memory even if

KeePass workspace was locked. Quick web search suggested KeePass 2.X Master Password Dumper

was designed to do exactly that, and upon running it against the file it quickly revealed the potential

password. Looking at the output it wasn’t hard to guess the first two characters too.

With the database file unlocked, it was easiest to export all to a CSV file and the flag would stick out.

Naval chef's recipe
After some time playing around with different ways to exploit anything on the provided web, I

switched to using curl which complained about self-signed certificate while using HTTPS. By simply

trying to get a response via HTTP, I’ve quickly noticed the answer was right there in the 301 redirect

to HTTPS version of the page.

https://github.com/vdohney/keepass-password-dumper

© moNNster

Keyword of the day
Given the real application is reportedly hidden amongst a lot of fake ones, it’s first necessary to figure

out where all these are. Simple port scan revealed that they run in the range 60000-60500. By

inspecting the source code and resources, it became clear that the fake apps would generate a random

jitter before displaying one of 7 emoji images from /img/ directory also at random.

Listing all resources in that folder was not allowed and the delay made it particularly tricky to

enumerate all applications and resources by a script. First, I tried checking if all ports served all those

images and if any one of them would differ. To my disappointment, they all matched. Next, after some

experiments I’ve compared few apps to realize that the source code of each app differs by only a single

string present always at the same position in the code and of a same length. This made it possible to

extract this string easily and after hitting few dead ends, try the same approach to see if any app would

respond differently.

And, bingo! While most responded with 404, one app gave a 301 pointing to the flag.

Cat code
The code consisted of two python scripts, meow and meowmeow which imported from the former.

Meow contained a constant named meeow, which appeared to possibly be obfuscated version of the

flag – length matched, positions where we’d expect the brackets differed slightly from other and were

preceded by what could well be a representation of the keyword “FLAG”. Inspecting the routines, one

apparently takes the meeow constant as an input and somehow decodes it by calling the other

function. The other one seemed to implement some recursion, which turned out to be

implementation of the Fibonacci sequence calculating the n-th integer based on the input.

© moNNster

Looking at meowmeow, it become clear one must answer the question “Who rules the world?” by

entering “kittens”. This keyword would then be used as an input to the functions imported from

meow. Since I suspected already that the input should be a number, I tried printing all the partial

products of the final print to quickly figure out we’re going to need the 770-th of the Fibonacci

sequence, even without fully understanding all the code.

If the code is triggered as is, it should eventually produce the flag but will loop in the recursive for very

long time since the complexity of such algorithm is exponential, only meowing a lot during that. To

avoid that the easiest solution appeared to be finding the 770-th integer some other way and returning

that straight away. Luckily enough, the internet knew the answer, so it only took a bit of editing and

the flag was indeed revealed.

Component replacement
Upon visiting the website, it complained about the IP we’re visiting from. The obvious solution was to

try and spoof this using the X-Forwarded-For header and since the given range was quite broad, it was

apt to script this.

As soon as responses started to contain some data, it was easy to just filter for required keywords.

© moNNster

Suspicious traff ic
To look for any files exchanged over the network, I first tried exporting any objects from the packet

using Wireshark. Although some db files seem to be transferred over SMB, the one we’re looking for

was not amongst them. My next step was to filter HTTP traffic to see if anything useful would be in

there. There was again nothing really pointing to the exfiltrated file, but some pieces of information

that turned out to be useful later – credentials for accessing a webserver.

Further inspecting the traffic, I also discovered some FTP credentials and files transferred. After some

struggling I’ve learned from the PORT command it was possible to calculate the port used as

213*256+251=54779 and filter respective traffic, which appeared to correspond to tcp.stream 6.

Extracting and inflating the file home.tgz, I already found some breadcrumbs pointing to the stolen

database.

Not much else could be found in any of the files, but what caught my attention was some encrypted

SMB3 traffic in tcp.stream 11. I shortly found an article called Decrypting SMB3 Traffic with just a

PCAP? Absolutely (maybe.) which was the key to solving this challenge. Following the instructions

here, I grabbed some of the NTLM details required to calculate the random session key.

https://medium.com/maverislabs/decrypting-smb3-traffic-with-just-a-pcap-absolutely-maybe-712ed23ff6a2
https://medium.com/maverislabs/decrypting-smb3-traffic-with-just-a-pcap-absolutely-maybe-712ed23ff6a2

© moNNster

For the next step, it was necessary to figure out James’s password. It took me a while to realize it may

be following the same format as the 2 already known sets of credentials. Still following the article, I’ve

created a wordlist using mp64 as james_admin.f0r.SMB. followed by 7 digits and quickly found the

valid one with hashcat.

Using the provided python script and password, I was now able to calculate the session random key

and configure Wireshark to decrypt it.

Sure enough, the session was now easy to read, and more traces of the lost file surfaced. It was even

possible to extract the file now and the last step was to decrypt it with the previously recovered

password using openssl to get the flag.

